a2 United States Patent

Santos et al.

US009053001B2

US 9,053,001 B2
Jun. 9, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(62)

(1)

(52)

(58)

METHOD AND APPARATUS FOR ENHANCED
DESIGN OF MULTI-TIER SYSTEMS

Inventors: Jose Renato Santos, San Jose, CA (US);
Gopalakrishnan Janakiraman,
Sunnyvale, CA (US); Yoshio Tumer,
Redwood City, CA (US)

Assignee: Hewlett-Packard Development
Company, L. P., Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 958 days.

Appl. No.: 12/711,680

Filed: Feb. 24, 2010

Prior Publication Data
US 2010/0153769 Al Jun. 17, 2010

Related U.S. Application Data

Division of application No. 10/882,597, filed on Jun.
30, 2004, now Pat. No. 7,698,402.

Int. Cl1.

GO6F 15/16 (2006.01)

GO6F 11/00 (2006.01)

GO6F 11/20 (2006.01)

U.S. CL

CPC GO6F 11/008 (2013.01); GO6F 11/20

(2013.01)
Field of Classification Search
USPC 709/220, 226, 200
See application file for complete search history.

Service

151

DD Tier1 D

1582

1] Tier2

163

U] mes []

150

(56) References Cited
U.S. PATENT DOCUMENTS

5,889,520 A * 3/1999 Glaserc.ccooevevenen 715/853

6,892,234 B2 5/2005 Knight

7,389,217 B2 6/2008 Benny et al.

7,516,423 B2 4/2009 De Smedt et al.

7,526,774 B1* 4/2009 Becketal. 719/320
2003/0182461 Al* 9/2003 Steltingetal. 709/310
2005/0044197 Al 2/2005 Lai
2005/0086335 Al 4/2005 Liuet al.

2005/0262462 Al 11/2005 Janakiraman et al.
2006/0004548 Al 1/2006 Santos et al.
OTHER PUBLICATIONS

“Automatic Design of Dependable Data Storage Systems,” Keeton
and Wilkes, in 10th ACM-SIGOPS European Workshop, Sep. 2002.
“Automated Multi-Tier System Design for Service Awvailabitity,”
Janakiraman, et al., First Workshop on the Design of Self-Managing
Systems (at DSN-2003 San Francisco), Jun. 2003.
(Hippodrome:running circles around storage administration, Ander-
son et al., Conference on File and Storage Technologies (FAST’02),
pp. 175-188, Jan. 28-30, 2002.

* cited by examiner

Primary Examiner — David Lazaro
(74) Attorney, Agent, or Firm — Hewlett-Packard Patent
Department

(57) ABSTRACT

A system and method for performing enhanced modeling of
multi-tiered architectures is presented. The system and
method enable selection of a preferred design for a multi-
tiered architecture of components based on a set of estab-
lished criteria, and may employ certain vectors and functions
in component attributes, and such attributes may include scal-
ability and scope of fault attributes.

24 Claims, 4 Drawing Sheets

Resource Component
161 171
ailure
Component1
162 172
Failure
Component2 Mode2
163 173
Failure
Component3 Mode3

U.S. Patent Jun. 9, 2015 Sheet 1 of 4 US 9,053,001 B2

101b
SERVICE
SPECIFICATION INFRASTRUCTURE
SPECIFICATION
SERVICE
REQUIREMENTS Service Modet 102
101a Infrastructure Attributes
Service Specification
103
1 W Availability
Estimale
DESIGN GENERATOR
Final Candidate
(rtommedite (riommedate AVAILABILITY
Raprasentstion) A Represantation) EVALUATION
ENGINE
TRANSLATOR
Candidate
Dasign
105 iy
TRANSLATOR | 106 107
AUTOMATED
DESIGN
GENERATOR

Final Dosign
(Deployment
Description)

DEPLOYMENT MECHANISM 108

FIG. 1A

US 9,053,001 B2

Sheet 2 of 4

Jun. 9, 2015

U.S. Patent

0L}

€3poiN
ainjie
€ll
Z9PoW
aJnjie
¢l)
LapoiN
ainjie4
1Ll

gl Ol

oSt

09} (] eew [[]

eusuodwon

€91 Mu zon][]
Jiuauodwon

jusuodwon

a9l
p8lL
Jjusuodwo) D D D
191 IGL
801n0say

80IMI8S

US 9,053,001 B2

Sheet 3 of 4

Jun. 9, 2015

U.S. Patent

¢ Il

oz €02

80T fiq

sz=dniae3s xTun=puedep Tdw=jusuodwod
wp=dn3zeis gourydeu=puadsp xyun=3jusuoduod
sp9=dnjaels [nu=puadsp gauTyorul=juauodwod
I I=923200581
gz=dniiejs xnuii=puadep Tdu=juauvodwod
uz=dnaxeas youtyoeu=puadsp xnurl=3jusuodwod
spg=dnixeas frnu=pusdsp ysutyoew=juauodwod
HI=32In0$8x
xtun=puadsp aseqejep=1usuodwod
yautyorw=puadap xTun=3usuodwos
1Tnu=puadep gauTyorw=juauodwod
9I=82IN0SDX
sge=dniseis xtun=puadep grsarasdde=juauoduiod
wp=dnyxe3s ysuryorw=puadsp xTun=juauodwon
spg=dnjxeis [{nu=puadap gouTydew=juauoduwos
33I=90In05921
wz=dnjze3s xtun=puadep yIsarasdde=jusuodwon
wp=dn3jaeis geutyoeuw=puadep xyun=juauoduwod
sp9=dnjaels [[nu=puadap gauTyoeul=ajusuodod
FI=BDINOSDI
sgg=dniaels xnurr=pusdep giasrasdde=jusuoduwod
wz=dn3reas youtyosew=puadsp xauti=3uauodwod
ggg=dn3Ieis jinu=puadap youTyorw=3usucduoo
JIx=2d21n0saax
uwz=dniieis xnutl=puadop gaaszesdde=juauoduod
urz=dn3re3s ysurTyoeW=pusdap XauT=3usuodwod
sgg=dnizels [inu=puadsp yauTYorW=3uUsUOdWOD
0X=30IN0CE2
sgg=dnize3s xnurr=pusdap I9AI85qdM=3udUOdWOD
wy=dnlIeis yautyseu=puadap ¥Tun=quauoduod
spg=dn3zeys Trnu=pusdep gauTyoRW=3IUdUOCdWOD
FI=90IN0831
spc=adnhIe3s XNUI[=pusadap Iarzasgam=3jusuoduwod
uz=dnfieis yautyseuI=pusdep xnuty=jusuoduod
spe=fdnazels T1nu=pusdep ysuryoew=3jusuoduod
£Y ¥I=280INn0sax
NOILAIYISIA SADUNOSTL \\

9
f[eazajuT jutodyosyo=opai|
0=1502
150" T« fupz-wT]]=obues jeaxajut jutodyoeyd=ueied

[299d NHmuu:wudnwmcmu_coﬂumuoalmmmuoumusmumm
JuTodyoaYyo=Ws TueyoaU
asTeI=13A0TTRI (=aTed@l Pp9=JqIu 31J0sS=3InTTe’

|||1|x||||l||+%AucHoaxownuvnoku 0=1S02 WTsIsyjrom=3uduodiiod

9sTej=19A0T1E] (=1TedaI PQ9=Jqim 3jos=aInTIe]
[op0aZ 0]=(spowdo)3sod sseqeiep=jusuoduod

asTeg=12a0TTEI O=ITedax pE9=Jqiur jjos=aInfreJ
{0002 0}=[opowdo)3soo gasazasdde=jusuodwod

asTRI=I8A0TTEF (=XTedal pPQ9=Jq3iw IFos=2InTIe]
10021 0}=(opowdo) 3500 yiaazasdde=jusucduos

asTej=19A07TRy (=2TRd2aI pPO9=Jqiuw 3jos-=ainite;
0=3500 Idarzasgam=3uauoduod

asTeI=I10A0TTRY p=ITedaa PE9=Iqaul 3JoS-=oIN[TEJ

{00z 0]={(spoudo)isoo xTun=3jusauvoduos
a5TeI=12A0TTeI Q=aTedaI pQ9=Jqiw 3J0S‘=3INTTEJ
0=3500 XNUTT=3usuoduod

H[ug ug ust ugE] = (7e401) 3 Tedoz]

[00£62 008ST 0092T 00TOT]=(T2a2T)3s02
[umut3eTd ‘pTOb ‘I2ATTS ‘9ZUCIq] =abuRI T9AdT=wexed

SOUBUDIUTRUSUS TURYOSM
as{eI=I800TTR] O=aTedox pOGI=Jqil 1JOoS=dInyTeJ
wZ=alWT3 ISA0TTRJ ONI1=IDACTTEJ
<adueudjuTRUD=I1TRdOI POOEI=JqIW PIEY=2INTTIE]
[00SsEs 000581 =(opoudo) 1500 gautyoru=3usucduod

U9 ug usT uag)={(Teaay)1Tedex
[00ST 097 085 08£) =(T@a®T)350D

fwautierd/prob’18a1Ts ‘ozU0Iq] =obury TasaT=uezed

adurRuajuUTRU=USTUYDSU
asTeI=I19A0TTeY O=iTedel pqr=Jqiw 3JOS=3INTTEJ
WZ=sWT} ISAOTTEF 2NIJ=IDAOTTET
<asuruajuTew>=1Tedas peGg=3qiu piey=aIniTe]
{092 00bZ)=(opomdo)asod yauTydru=1ustodwos

NOILAI¥OS3Ad SININOJWOD \\

10z

202

S0z

US 9,053,001 B2

Sheet 4 of 4

Jun. 9, 2015

U.S. Patent

20y

7 Ol

[4

— 7ep- I7Iadu=(9ATIOYU 'TPATIIUT JuTod)dayd ‘uoT3ed0 T aberols)adueurogradujjurtodyosyo=IsTuryodu |

jep-13xad=(aatTjoyu)eouewrograd [1+’000T-I}=8ATIOWU uwﬂuumnoomuasmmAOﬂumumu>UHAﬂnmamom_Hnuwonsommu

> Jep-HIxedu= (9AT30YU ' TEAZAIUT Jutody0ayD ‘UOTIEC0T ebexols)eouedioziedu jutodyosyo=usTuRyOW |

aep*gized=(0ATIOVU) oourwIoIIod [T+'000T~1]=PATIOVU I8T3=0d0o0s3TNR] OT3IR15=A3TTTCRTIROS HI=0DINOSOI

uoT1e3ndwods=13T3
0000T=22T15qof DTITIUSTOS=9D7AIDS

& Ol4

20t

|

0000 I=2aoueurojrad -n-

aep*gJ31ad={9aT10yu) soururoyaad
jep-gyrad={2aTIOYU) douBWIOTIAd
jep-g3zad=(aaTioyuToouruIo3zad
1ep*nIzad=(9AaT30yWU) aourwrogaad

3ep-giied= (2AT30yU) souruIOoF Iad
Jep y7aad={aaT30yu) adurwroyxad

[T]1k2AT30VU spou=adoosiTnes PaxTI=AJTTTQRTEOS 9I=90IN0SSI

[T+‘000T-T1)=PAT3OVU
[T+'000T~T]=2AT3OVU
{T+'000T-11=0AT0VU
[T+/000T-T}=SATIOWU

[T+000T-T]=0ATI0YU
[T+'000T-T]=0ATI0YU

90IN0S91=9d00STNE]T
soanosai=adoosiiney
aoanosax=2doosyTnes
901n08931=0d0Ds3TNET

saxnasax-adossyines
aarInosai=adoossjiTnesy

aseqelep=I3Tl
oTWeUAp=A1TTTQETEDS JI=20INOSAIX
OTWRUAP=A1TTTqeTRdS HI=9DINOSdI
OTWEUAP=AITTTQRTEDS (I=30IN0SdI
OTWRUAP=A]TTTQRTEOS JI=IDIN0SDI

uoTyeoTTdde=13T23
STwRUAP=A4TTIqRTE0S HI=82INOSB8I
DTWRUAP=A3TTTQRTEDS YI=00IN0OSdI

qem=19T3

20I0UWO03=I0DTAIDS

10e

US 9,053,001 B2

1
METHOD AND APPARATUS FOR ENHANCED
DESIGN OF MULTI-TIER SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATION

The present Application claims priority under 35 U.S.C.
§120 to and is a Divisional Application of U.S. patent appli-
cation Ser. No. 10/882,597, filed on Jun. 30, 2004, now U.S.
Pat No. 7,698,402, the disclosure of which is hereby incor-
porated by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the art of design-
ing multi-tier system architectures, and more particularly to
producing a design or set of designs meeting a high level set
of performance and availability requirements.

2. Description of the Related Art

Certain businesses or other organizations deploying Inter-
net and Enterprise services utilize components performing
within multiple tiers. In such an environment, service down-
time and poor performance either among individual compo-
nents or within tiers can reduce overall productivity, revenue,
and client satisfaction. The challenge in such an environment
is to operate at efficient or sufficiently optimal levels of avail-
ability, where availability is defined as the fraction of time the
service delivers a specified acceptable level of performance.
Acceptable levels of performance may vary depending on the
organization’s business mission.

Component failure within the infrastructure supporting a
service can adversely impact service availability. A “service”
is a process that may run on one or more computing hardware
components, and perhaps a large number of such compo-
nents, including servers, storage devices, network elements,
and so forth. Many of the hardware components run various
collections and layers of software components, such as oper-
ating systems, device drivers, middleware platforms, and
high-level applications. Performance of these components
may be characterized by quantifiable statistics, including but
not limited to component failure rates. For an individual
component, if the component has a low failure rate in isola-
tion, in total the combined infrastructure having multiple
components can experience a significant rate of component
failures. This significant component failure rate can in turn
lead to frequent or extended periods of unplanned service
downtime or poor performance.

The challenge in such an environment is to assess service
availability and performance as a function of the different
design choices including the type of components to be used,
the number of these components and associated hardware and
software configurations, and to select the appropriate design
choice that satisfies the performance and availability require-
ments of the service at a relatively minimum cost.

Previously available assessment tools have been unable to
automatically find a solution from this multi-dimensional
design space that provides an enhanced cost-benefit tradeoff
assessment to the user.

Currently available tools to select a design typically only
enable evaluation of a single design. Since previous tools only
evaluate single designs, system design has entailed employ-
ing human experts to manually define alternative designs
satisfying the specific availability requirements. A primary
disadvantage of the current approach is the need to employ an
expert to carry out the design. Such experts may be in scarce
supply or be relatively expensive. In addition, assessment and

10

15

20

25

30

35

40

45

50

55

60

65

2

design according to the expert process is largely manual and
likely slow. Finally, the final results of the manual design
process are not necessarily optimal since they are guided
mostly by experience and intuition rather than based on a
systematic algorithm for searching the large, multi-dimen-
sional space of candidate designs.

Automating the design and configuration of systems to
meet user’s availability requirements exists in very few situ-
ations. One system, an Oracle database design, implements a
function that automatically determines when to flush data and
logs to persistent storage such that the recovery time after a
failure is likely to meet a user-specified bound. Automated
design of storage systems to meet user requirements for data
dependability have been considered, encompassing both data
availability and data loss. Such technologies for automating
subsystems, such as databases and storage systems tend to be
domain specific and generally cannot be applied to designing
multi-tier systems.

Certain previous attempts to manage component and con-
figuration availability have been limited to automated moni-
toring and automated response to failure events and other
such triggers. For example, cluster failover products such as
HP MC/Serviceguard, Sun Cluster, and Trucluster detect
nodes that fail, automatically transition failed application
components to surviving nodes, and reintegrate failed nodes
to active service upon recovery from the failure condition.
IBM Director detects resource exhaustion in its software
components and automates the rejuvenation of these compo-
nents at appropriate intervals. Various utility computing
efforts underway will also automatically detect failed com-
ponents and automatically replace them with equivalent com-
ponents from a free pool. Most notably, none of these prod-
ucts or processes provide an overall assessment for particular
architectures, but merely react upon failure of a process,
component, or tier.

One solution to providing automated design of multi-tier
architectures is provided in U.S. patent application Ser. No.
10/850,784, entitled “Method and Apparatus for Designing
Multi-Tier Systems,” inventors Gopalakrishnan Janakiraman
etal., filed May 20, 2004 (the “Janakiraman reference”). This
design provided for automated design of multi-tier systems,
including a searchable and partitionable model and modeling
solution usable in, among various scenarios, assessing design
costs and selecting a design having a lowest cost.

The foregoing systems and implementations do not, how-
ever, account for different service characteristics, where cer-
tain services may exhibit different scalability properties. Cer-
tain services may only be able to run in a cluster with a
predetermined number of resources, while other services may
have the ability to run in one of multiple configuration options
with a different number of resources, but cannot change the
number of resources dynamically, or while the service is
operational. Other types of services can change the number of
resources used dynamically. The previous approaches,
including the Janakiraman reference, cannot represent these
different types of services.

Previous systems also do not account for a failure in one
resource affecting the remaining resources supporting the
service. The failure of one resource can cause other resources
to fail. For example, a failure of one resource or node in an
application that requires communication among nodes can
cause the entire application to fail. Such a cluster wide failure
scope has not been addressed in previous solutions, and
knowledge and assessment of such characteristics are impor-
tant to correctly model the availability of services having this
type of failure behavior.

US 9,053,001 B2

3

Further, previous solutions also do not offer the ability to
represent certain types of availability mechanisms in assess-
ing the availability of a service. Availability mechanisms are
mechanisms that change the availability characteristics of a
service, such as times to failure, service levels, and so forth.
The Janakiraman reference specifically represents availabil-
ity mechanisms that affect repair time associated with fail-
ures. Other classes of availability mechanisms, such as soft-
ware rejuvenation techniques and checkpoint/restart
mechanisms that affect other attributes may be employed in
certain designs, but are not considered in prior solutions.

In addition, the Janakiraman reference only represents
parameters describing systems characteristics using constant
numeric and string values. Neither that solution nor any other
known solutions can use general functions to describe perfor-
mance characteristics of services and mechanisms and cost
functions of components and mechanisms.

Based on the foregoing, it would be advantageous to offer
a system and method for designing multi-tier systems that
improves previously known solutions by supporting a wider
range of services and design options.

SUMMARY OF THE INVENTION

According to a first aspect of the present design, there is
provided a system for selecting a preferred design architec-
ture for a multi-tiered architecture based on a service speci-
fication, an infrastructure specification, and service require-
ments. The system comprises a design generator receiving the
service specification and the infrastructure specification and
establishing a candidate design in an explorable partitionable
format based thereon. The system further comprises an avail-
ability evaluation engine configured to receive the candidate
design and provide an availability estimate for the received
design to the design generator, wherein the availability esti-
mate comprises an evaluation of at least one availability
mechanism affecting availability and performance of a com-
ponent by altering the value of at least one infrastructure
specification. The design generator iteratively evaluates
designs in combination with the ability evaluation engine to
establish the preferred design. The explorable partitionable
format comprises at least one from a group comprising an
attribute value expressed as an ordered set, an attribute value
expressed as a function, a scalability attribute, a scope of fault
attribute, and an availability mechanism.

According to a second aspect of the present design, there is
provided a method for representing multi-tier service
attributes to be used in judging performance and availability
of at least one service and costs associated with the at least
one service. The method comprises listing at least one tier,
listing candidate resource types usable in each tier, and listing
a service tier characterization for each candidate resource
type. The service tier characterization comprises at least one
from a group comprising an ordered set specifying a valid
number of resource instances in the tier, a performance char-
acterization, a scalability attribute, and a scope of fault
attribute.

According to a third aspect of the present design, there is
provided a method for representing infrastructure design
choices describing at least one construction of a design. The
method comprises providing at least one resource specifica-
tion in an explorable partitionable format, the resource speci-
fication comprising at least one component specification. The
component specification comprises component cost and
component availability properties derived from properties of
components comprising the resource. The explorable parti-
tionable format comprises at least one from a group compris-

20

40

45

55

4

ing an attribute value expressed as an ordered set, an attribute
value expressed as a function, a scalability attribute, a scope
of fault attribute, and an availability mechanism.

According to a fourth aspect of the present design, there is
provided a method for modeling components in a multi-tiered
architecture. The method comprises specifying available
architecture components in an explorable partitionable for-
mat. The explorable partitionable format and components
described therewith may describe at least one service. The
partitionable aspect of the format enables configuring a
model in different configurations. The explorable partition-
able format comprising at least one from a group comprising
an attribute value expressed as an ordered set, an attribute
value expressed as a function, a scalability attribute, a scope
of fault attribute, and an availability mechanism.

According to an fifth aspect of the present design, there is
provided a model for use in representing an infrastructure
design space for multi-tier systems. The model comprises a
specification for a plurality of components in an explorable
partitionable format. The explorable partitionable format and
components described therewith may describe at least one
service. The partitionable aspect of the format enables con-
figuring a model in different configurations. The explorable
partitionable format comprising at least one from a group
comprising an attribute value expressed as an ordered set, an
attribute value expressed as a function, a scalability attribute,
a scope of fault attribute, and an availability mechanism.

These and other objects and advantages of all aspects of the
present invention will become apparent to those skilled in the
art after having read the following detailed disclosure of the
preferred embodiments illustrated in the following drawings.

DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings in which:

FIG. 1A shows an embodiment of the automated service
design system;

FIG. 1B illustrates a typical design space model;

FIG. 2 illustrates an embodiment of an enhanced infra-
structure specification, or component specification;

FIG. 3 is an example component specification of an e-com-
merce application; and

FIG. 4 shows an example component specification of a
scientific application.

DETAILED DESCRIPTION OF THE INVENTION

The present solution automates the process of designing
and determining an optimal or near-optimal configuration of
aservice’s computing infrastructure to meet service availabil-
ity and performance requirements, with respect to a given set
of infrastructure and service attributes. The system targets the
automated design of services having a common multi-tier
structure, such as web tier plus application server tier plus
database tier, but could also be used to design single tier
services. The design space explored automatically can be
large and consist of multiple dimensions including but not
limited to a choice of hardware and software components,
hardware and software configurations, number of hardware
components, use of redundant components, state of redun-
dant components (cold, standby, active), and so forth. Each
choice within each of these dimensions presents a different
tradeoff among availability, performance, and cost of owner-
ship, that is assessed by the system. The system finds a solu-
tion from the multi-dimensional design space providing a

US 9,053,001 B2

5

best cost-benefit tradeoff with respect to the specific service.
In general, this tradeoff can be modeled with a utility function
of cost, performance, and availability. In a simple case, the
problem can be reduced to finding a minimum cost solution
that meets the user’s availability and performance goals
specified as simple thresholds.

The enhancements presented herein enable the solution to
more accurately describe the design space using enhanced
syntax, constructs to describe general availability mecha-
nisms, and certain beneficial parameters such as design scal-
ability and faultscope. Use of these enhanced parameters can
enable a system designer to more accurately represent com-
ponents in a tier or in multiple tiers, and may provide for a
better overall design in many circumstances.

In general, the system receives, as input, a model describ-
ing the different ways in which a design can be constructed in
addition to a set of high level requirements, namely perfor-
mance requirements and availability requirements. The sys-
tem then produces one design or set of designs that meet the
set of high level requirements. The system includes two sepa-
rate and distinct components. First, the system includes a
model for representing the infrastructure design space for
multi-tier systems and their properties that is appropriate for
judging performance and availability properties of services
and their associated costs. Second, the system includes a
method for searching the design space in an efficient manner.
Terminology

Asused herein, the term “customer” means the end user or
recipient or beneficiary of the solution presented herein. In a
typical scenario, a customer provides a service specification
and a set of service requirements to the system. This infor-
mation is combined with an infrastructure specification to
generate a preferred architecture configuration satisfying the
customer’s requirements at a relatively minimum cost. The
“infrastructure specification” is usually specified by the infra-
structure provider, and may be stored in a repository to be
used for multiple services and customers. Alternatively, the
infrastructure specification could also be specified by the
customer. For commonly used services, the service specifi-
cation may be stored in a repository to be used by multiple
customers. This infrastructure specification defines a list of
components and mechanisms that can be used, as well as
component and mechanism availability, performance and
cost attributes. The “components” in the infrastructure speci-
fication can correspond to components available from a
shared pool to be allocated to services on demand. Alterna-
tively, the components in the infrastructure list can corre-
spond to components to be purchased after selecting the final
configuration.

Regarding the nomenclature for the models discussed
herein, FIG. 1B illustrates a typical design space model. The
design space may comprise a service 150 having a plurality of
tiers 151, 152, and 153. Any number of tiers may be provided.
Each tier comprises at least one resource, such as resource
160, having a plurality of components associated therewith,
such as components 161, 162, and 163. Any number of com-
ponents may be provided in a resource. Each component,
such as component 170, has associated therewith at least one
failure mode, such as failure modes 171, 172, and 173. Any
number of failure modes for a component may exist.
Overall System Design

A preferred embodiment of the overall system 100 is pre-
sented in FIG. 1A. From FIG. 1A, the Service Requirements
101a is provided by the customer to the automated design
generator 103 through a user interface (UI). The Service
Specification 1015 describes the service characteristics to the
automated design generator 103. In one embodiment, Service

25

40

45

60

6

Specification 1015 for one or more services are stored in a
repository, and can be selected by the customer when the
service is pre-defined. In another embodiment, the Service
Specification is provided by the customer through a user
interface. The Infrastructure Specification 102 is stored in a
repository and provides the description of the design choices
that can be used to generate designs. These design choices
include component types, repair mechanisms, their associ-
ated attributes, and the manner in which different types of
components can be combined to create valid resources to be
used by services. These three input mechanisms, Service
Requirements 101a, Service Specification 1015, and Infra-
structure Specification 102 establish a set of criteria from
which the system establishes a preferred design. All informa-
tion provided to the automated design generator 103, whether
from the Service Requirements 1014, the Service Description
10154, or the Infrastructure Specification 102, conform to the
model definition described in detail below. The automated
design generator 103 comprises a design generator 104 that
receives information from Service Requirements 101a , Ser-
vice Specification 1015, Infrastructure Specification 102, and
in certain instances the availability evaluation engine 107 and
produces a candidate design or intermediate representation
based on the information received. The design generator 104,
described in more detail below, may operate iteratively in
conjunction with the availability evaluation engine 107
wherein the design generator 104 produces a candidate
design, provides the candidate design to translator 105, which
in turn provides an availability model of the candidate design
to the availability evaluation engine 107. The availability
evaluation engine 107 provides an availability estimate to the
design generator 104. Once the design generator 104 identi-
fies the final design or preferred design, the final or preferred
design is provided to translator 106 in the form of an inter-
mediate representation, and the translator 106 sends a trans-
lated representation from automated design generator 103 to
a deployment mechanism 108 in the form of a deployment
description of the final design.

In general, the translators of FIG. 1A provide a translation
of'a design in one format into that receivable by and operable
at the receiving component. For example, different existing
evaluation engines such as Avanto, Mobius, Sharpe, and so
forth, can be used as the availability evaluation engine 107.
Such evaluation engines are generally known to those skilled
in the art. Each of these evaluation engines employs a differ-
ent level of abstraction for modeling system availability. The
internal availability model of the design generator 104 is
translated into the appropriate model of the evaluation engine.

As shown in FIG. 1A, the overall system and the automated
design generator 103 initially receives a service requirement
and performs functions and assesses the proposed architec-
ture according to the service description. The service require-
ment specifies the high-level “performability” requirements,
or requirements for service performance and availability that
preferably are satisfied by the component/service/tier. Per-
formability requirements can be specified in many different
ways. In one embodiment, the specification of performability
requirements includes (1) the minimum acceptable perfor-
mance for the service in service-specific units such as trans-
actions per second for the expected type of transaction, and
(2) a maximum downtime allowed over a specified period,
such as annual downtime allowed. The term annual downtime
or simply downtime indicate the expected time a service will
be unavailable in a year. A service is considered unavailable
whenever the number of active resources is not sufficient to
achieve the service performance requirement.

US 9,053,001 B2

7

Model Representing the Infrastructure Design Space

In a preferred embodiment, the service description
describes the service structure by listing the tiers that are to
comprise the service implementation, the candidate resources
that can be used in each tier, the performance characterization
of the service for each candidate resource type, and an indi-
cation as to whether the service could be deployed in a clus-
tered configuration.

In general, the model specified and employed in the current
design includes information about components in a form that
can be explored and considered by various types of comput-
ing devices. The model therefore comprises a means for rep-
resenting the components in a readable and explorable for-
mat. The listing of components in the model, or the
description of the components, can be used to describe other
services, or a nesting of component attributes may be pro-
vided such that performance of one service is based on per-
formance of an associated or linked component specified
within the model. The model may be partitioned such that
different configurations may be explored. While the model
may include component descriptions of varying detail
depending on circumstances, at an absolute minimum, the
model includes specifications on cost associated with the
component, failure rates for the component, repair times for
the component, and performance of the component.

Components

FIG. 2 illustrates an embodiment of an enhanced infra-
structure specification, or component specification according
to the present design. As described above, the design space
model is decomposed into an infrastructure model and a
service model. These models may be specified using a simple
attribute-value pair as shown in FIG. 2. Attribute values may
take four different forms in the present design, including
constants, ranges, functions, and pointers. As noted above, a
constant attribute value represents simple numbers or strings,
and is illustrated at point 201. For numeric constants repre-
senting time, the current solution uses a letter following the
numeric value to represent time units: s for seconds, m for
minutes, h for hours, and d for days. Attribute values may
include a range or set of ranges, such as the range specified at
point 203. A continuous range may be expressed by a mini-
mum value, maximum value, and an additive term or multi-
plicative factor used to generate intermediate values, as illus-
trated at point 206. Establishing the continuous range in this
manner enables reducing the infinite set of values in a con-
tinuous range to a finite set of discrete values, thus avoiding an
infinite number of designs for evaluation. An attribute value
may also be specified as a function of other attributes and
predefined variables, such as that illustrated at point 202.
Point 202 shows the repair time of a component expressed as
a function of attribute level. In this example repair(bronze) is
38 h, or 38 hours, repair(silver) is 15 h, repair(gold) is 8 h, and
repair(platinum) is 6 h). An attribute value may also be a
pointer to an availability mechanism determining the effec-
tive value of the attribute, such as the pointer checkpoint
illustrated at point 204. In this example the mechanism check-
point determines the value of variable redo. The value is a
function of one or more mechanism parameters, as defined in
the mechanism specification, such as that shown at example
point 207.

Point 205 of FIG. 2 is an example of a component type
description. The component specification describes the fol-
lowing characteristics of a component type: annualized cost,
failure modes, an optional redo window attribute, and avail-
ability mechanisms associated with the component. Specifi-
cations for several component types are presented in FIG. 2,
including hardware components associated with nodes and

10

15

20

25

30

35

40

45

50

55

60

65

8

software components associated with operating systems and
applications. For example, component type machineA repre-
sents a type of hardware node, and component type linux
represents a type of operating system.

The annualized cost of a component is represented by the
cost attribute of the component’s specification. The annual-
ized cost of a component is typically the sum of the annual
cost to operate the component and the initial cost of the
component divided by its useful lifetime, typically in years. A
component’s cost depends on its operational mode, which is
one of the design options in the design space model. A com-
ponent may be in either inactive or active operational mode.
The cost attribute of a component may be specified as a
function of a component’s operational mode using a pre-
defined variable, here called opmode. Defining cost as a func-
tion of the component operational mode enables modeling
situations where, for example, electrical power costs are
incurred only where a hardware component is powered on, or
where inactive mode software components do not generate
licensing costs. In the example at point 205, for component
type machineA, the annualized cost is specified as a function
of opmode with values 2400 for inactive mode and 2640 for
active mode.

Components can be part of active resources or spare
resources. All components of an active resource are typically
in active operational mode. Spare resources can have compo-
nents in any combination of operational modes, assuming
satisfaction of component dependency constraints as dis-
cussed below. Component operational mode for spare
resources is a design option selected by the design generator.

Failure modes are as specified above, and represent the
different ways in which a component can fail. Components
may have multiple failure modes in active mode but are
assumed failure free in inactive mode. machineA at point 205
in FIG. 2 has two failure modes, one named hard in this
embodiment to represent a permanent failure mode and the
other named soft in this embodiment to represent a transient
failure mode. Each failure mode specification includes
attributes mtbf and repair, representing mean time between
failures and the mean time to repair the component after the
associated failure.

Spare resources may be used for failover, i.e. to replace a
resource with a failed component, in certain situations. The
failover mode specification includes the failover Boolean
flag, indicating if the type of failure can trigger a failover to a
spare resource, if available. In the example of point 205,
failure hard causes a failover if a spare resource is available,
while failure soft does not trigger failover, even if spare
resources are available. failover_time indicates the time
required for failover transition to a spare resource, and can
include time to execute management activities such as updat-
ing an inventory database, time to prepare the spare resource
with an appropriate application, and other considerations.

Application software may have an attribute redo, indicat-
ing a maximum amount of computation needed to be per-
formed to regenerate lost results or application state upon
each failure event. This parameter represents applications
having a state that could be lost due to failure that would then
need to be recreated. In the worst case, the value of redo
equals the total job, but redo may also represent a fraction of
the job, if the job has well defined points where intermediate
results are saved. For technical computing applications
deployed on large clusters, the large number of components
can give rise to a high failure rate and significant likelihood of
failure during the life of a job, especially for long-running
jobs. In extreme cases, failures can be so frequent that the job
can never complete as the job experiences a never-ending

US 9,053,001 B2

9

cycle of failures followed by job restarts. redo is an optional
attribute, and may be specified in units of work or units of
time. Conversion between units of work and units of time may
be performed by the design generator using the service per-
formance model which specifies the relationship between
work and time. From FIG. 2, the component weatherism is a
weather specific scientific application having computation
state that can be lost after failure and a nonzero value for redo,
shown at point 204. In the case of point 204, the value of redo
is defined by an availability mechanism checkpoint,
described in further detail below.

Availability Mechanisms

The component specification also includes a description of
the availability mechanisms associated with individual com-
ponents. In general, an availability mechanism affects the
availability and performance of a service by affecting some
performance or availability property of the design. Availabil-
ity mechanisms are represented in the infrastructure model as
operators that may change the values of some of the compo-
nent attributes described above. This approach has the advan-
tage of being able to represent arbitrary availability mecha-
nisms, including new mechanisms that may be created in the
future. One example of an availability mechanism is a main-
tenance contract that determines response time of hardware
repair personnel and thus affects the repair time of compo-
nents. Another example is use of software rejuvenation tech-
niques that periodically restart software components and
reduce the failure rate of these components by forcing the
component to restart at an initial fresh state. Such software
rejeuvenation techniques tend to make components less sus-
ceptible to failures. Another example of an availability
mechanism is a checkpoint-restart mechanism that periodi-
cally saves the computation state of an application to stable
storage to reduce the computation that must be re-executed to
recover from a failure.

Each mechanism specification includes (1) user defined
parameters configurable for the mechanism, along with
ranges of possible values; (2) additional cost per component
associated with the mechanism; and (3) entries describing
how the mechanism determines component attribute values
according to functions of the user defined parameter values.
FIG. 2 shows two examples of availability mechanisms.
Mechanism maintenance in component machineA represents
amaintenance contract. The mechanism specification defines
the parameter level with four possible values corresponding
to the level of the contract: bronze, silver, gold, or platinum.
The mechanism in this example specifies the additional cost
per component as a function of the parameter level. The
mechanism further specifies its effect on the repair attribute,
which in FIG. 2 is a function of the parameter level. In the
component illustrated, failure mode hard has attribute repair
determined by this maintenance mechanism function. As
another example from FIG. 2, mechanism checkpointin com-
ponent weatherism has two user defined parameters, storage_
location and checkpoint_interval. Mechanism checkpoint
modifies component attribute redo. Parameter storage_loca-
tionrepresents the location where the application level state is
saved. Value central is used to represent a central network
attached file system, and peer to represent state saved in the
local disk and in the disk of a peer node. The checkpoint_int-
erval represents the time between consecutive checkpoints
and can have any value from one minute to 24 hours. In the
example of FIG. 2, this continuous range is discretized by
selecting values that differ from the previous value by five per
cent, starting with the minimum value of one minute. The
attribute redo is defined as equal to the parameter checkpoint_
interval, or an identity function. The parameter storage_lo-

10

15

20

25

30

35

40

45

50

55

60

65

10

cation does not affect the modified attribute nor the cost, but
affects service performance as described in the service speci-
fication. Performance generally depends on characteristics of
the specific service and other components, such as hardware
components.

Resources

The resource specification includes a description of the list
of component types that are part of a particular resource type.
For example, resource rA in FIG. 2 is composed of three
components: machineA, linux and webserver. The specifica-
tion describes the dependencies between components. For
example, from FIG. 2, component linux depends on compo-
nent machineA in resource rA, meaning a failure in compo-
nent machineA causes component linux to fail. The value null
is used to indicate a component does not depend on any other
component. The attribute startup specifies the time needed for
starting a component once required predecessor components
have started. Startup time corresponds to the time required to
change the operational mode of one component from inactive
to active, assuming the components the one component
depends on are already in active mode. Once a failed compo-
nent has been repaired, all affected components must be
restarted in the order determined by their dependency rela-
tionship.

The total time a resource is down is the sum of the time to
repair the component plus startup times of all components
affected by the failure. In other words, downtime reflects the
component failure and failure of all components depending
directly or indirectly thereon. Similarly, failover to a spare
resource requires all inactive components of the spare
resource to become active, in dependency order, within a time
period depending on component startup times.

The number of components of each type that can be used to
build a design may be limited, particularly in a environment
with shared resources that are allocated to services on
demand. An optional parameter (not shown in FIG. 2) may be
employed to indicate the maximum number of components of
each type that can be selected for a design.

Model Representing the Service

FIG. 3 is an example service model of an e-commerce
service. Attribute service, specifies the service name, which
in this example is ecommerce. The service specification
includes a description of the list of tiers that compose the
service. The service in FIG. 3 has three tiers, web, application,
and database, while the service in FIG. 4 has only one tier,
computation. The service model specifies a list of candidate
resources for each tier. In the example of FIG. 3, two different
resource types can be chosen for tier web, four resource types
for tier application, and one resource type for tier database.
For example, the web tier may be implemented either with
resources of type rA or of type rB.

Scalability and Faultscope

The service specification of FIG. 3 describes the perfor-
mance and availability characteristics for each resource
option of each tier. Attribute nActive specifies a set of values
that determine the possible number of active resources that
may be employed in the tier design. In the example of FIG. 3,
the web and application tiers can have anywhere between one
and 1000 resource instances, while the database tier can only
have one active resource instance as shown by points 301 and
302. Any arbitrary set of values can be used to describe
application constraints in the number of resources. For
example, an application that requires the number of resources
to be a power of 2 with a maximum of 1024 resources will
specify nActive equal to [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024]. The attribute scalability describes the level of tier
flexibility with respect to the number of resource instances.

US 9,053,001 B2

11

Attribute scalability has value static when the tier cannot
change the number of resources during the tier’s lifetime, and
value dynamic when the number of resources can change. An
application that partitions data across nodes during the ini-
tialization process and cannot support partitioning or redis-
tribution of data after the job starts is an example of static
scalability, as illustrated by point 401 in FIG. 4. A web tier
where the number of web servers may change in an arbitrary
manner is an example of dynamic scalability.

Attribute faultscope defines the effect of a resource failure
on the entire tier. The faultscope parameter may have two
possible values: resource or tier. The value resource repre-
sents the case in which the tier remains operational with
performance reduced from n resources to n—1 resources after
a failure. In other words, a resource failure does not affect the
other resources in the tier for the resource value of faultscope.
Thus in a resource faultscope condition, a web tier having
multiple active nodes can remain operational in the event of a
single node failure. The value tier for faultscope represents
the case in which one resource failure causes the failure of the
entire tier. For example, an application that depends on con-
tinuous communication among all nodes of the tier will fail
completely when one node fails.

The attribute performance specifies the performance asso-
ciated with a set of uniform resources in service specific units
of work per unit(s) of time, as a function of the number of
active resources, nActive. For example, performance may be
expressed in transactions per second for an e-commerce
application; or frames/hour for a movie rendering applica-
tion. The performance function can be specified by a separate
function specification, such as, for example, the function
specification perfA.dat for resource type rA. In one embodi-
ment, this function specification is implemented by a table in
which each row defines the value of the function for a given
value of the function argument, i.e. each row defines service
performance for one specific value of the number of active
resources, having one row for each possible number of active
resources, as specified by attribute nActive. In an alternative
embodiment, the function definition could be implemented
by a computer program that takes as input the function argu-
ment and returns the function value.

For applications of finite duration, a service specification
may have an additional attribute, job_size, as illustrated in the
example of FIG. 4. Attribute job_size specifies the size of the
job in application specific units, such as the number of frames
needed for a movie rendering application.

If an availability mechanism described in the infrastructure
specification impacts service performance, this impact can be
described in the service specification. FIG. 4 describes the
performance impact of mechanism checkpoint in the service
performance for each resource option, which for this particu-
lar case are rH and rl, as illustrated at point 402. The attribute
mperformance specifies the performance of the mechanism
checkpoint, defined as a fraction of the ideal service perfor-
mance that may be achieved without the mechanism. In this
example the performance overhead is specified as a function
of three parameters: storage location, checkpoint interval,
and number of active nodes. As with attribute performance,
attribute mperformance can be defined by a function specifi-
cation, such as mperfH.dat and mperfl.dat in FIG. 4. In this
case, the function specification defines a function value for
any valid combination of multiple input parameters for the
specified range of values of these parameters.

It will be appreciated to those of skill in the art that the
present design may be applied to other systems that employ
architecture component design selection functionality, par-
ticularly those using automated selection processes. In par-

25

40

45

55

12

ticular, it will be appreciated that various architecture selec-
tion schemes may be addressed by the functionality and
associated aspects described herein.

Although there has been herein above described a system
and method for selecting a preferred design for a multi-tier
architecture of components based on an established down-
time requirement, for the purpose of illustrating the manner in
which the invention may be used to advantage, it should be
appreciated that the invention is not limited thereto. Accord-
ingly, any and all modifications, variations, or equivalent
arrangements which may occur to those skilled in the art,
should be considered to be within the scope of the present
invention as defined in the appended claims.

What is claimed is:

1. A method for representing multi-tier service attributes to
beused in judging performance and availability of at least one
service and costs associated with the at least one service,
comprising:

performing, in a processor steps of,

listing at least one tier;
listing candidate resource types usable in the at least one
tier; and
listing a service tier characterization for each candidate
resource type, wherein said service tier characteriza-
tion comprises at least one from a group comprising:
an ordered set specifying a valid number of resource
instances in the at least one tier;
a performance characterization;
a scalability attribute; and
a scope of fault attribute.
2. The method of claim 1, wherein:
the scalability attribute specifies whether a number of
resource instances in the service tier can be altered dur-
ing a lifetime of a service; and

the scope of fault attribute defines a resource failure effect

on the at least one tier.

3. The method of claim 1, wherein the method further
comprises providing a plurality of attribute-value pairs,
wherein a value of each attribute-value pair comprises at least
one from a group comprising:

a number value;

a text value;

an ordered set of at least one number value;

an ordered set of at least one text value; and

a function of at least one parameter.

4. The method of claim 1, wherein for each candidate
resource type, the service performance characterization com-
prises a characterization of a resource performance under the
service’s workload.

5. The method of claim 4, wherein:

the resource performance is indicated in the at least one tier

by a performance function indicating a throughput, in
service-specific load units, as a function of a number of
active resources in the at least one tier.

6. A method for representing infrastructure design choices
describing at least one construction of a design, comprising:

performing, in a processor, steps of,

providing at least one resource specification of a
resource in an explorable partitionable format, said
resource specification comprising at least one com-
ponent specification of a component of the resource,
wherein the component specification comprises com-
ponent cost and component availability properties
derived from properties of the component of the
resource, wherein the explorable partitionable format
comprises at least one from a group comprising:

an attribute value expressed as an ordered set;

US 9,053,001 B2

13

an attribute value expressed as a function;
a scalability attribute;

a scope of fault attribute; and

an availability mechanism.

7. The method of claim 6, wherein the component cost
comprises a periodic cost in units of currency per unit of time
for the component, and the periodic cost comprises compo-
nent acquisition cost and component operational cost.

8. The method of claim 6 wherein the at least one avail-
ability property comprises a failure mode.

9. The method of claim 8, wherein the failure mode has
associated therewith a failover behavior of the component and
repair time for the component.

10. The method of claim 6, wherein the infrastructure
design comprises a plurality of attribute-value pairs, and
wherein a value of each attribute-value pair comprises at least
one from a group comprising:

a number value;

a text value;

an ordered set of at least one number value;

an ordered set of at least one text value; and

a function of at least one parameter.

11. The method of claim 6, wherein the function of the at
least one parameter is defined in a mechanism specification,
wherein the mechanism specification comprises a list of
parameters, a range of values for each parameter, a cost func-
tion, and a name of an affected component attribute with a
function specifying the value of the affected attribute.

12. A method for modeling components in a multi-tiered
architecture, comprising:

performing, in a processor steps of,

specifying available architecture components in an
explorable partitionable format, including specifying
component cost and component availability proper-
ties of the architecture components, wherein said
explorable partitionable format and components
described therewith are configured to describe at least
one service, wherein said partitionable aspect of the
format enables configuring a model in different con-
figurations, said explorable partitionable format com-
prising at least one from a group comprising:

an attribute value expressed as an ordered set;

an attribute value expressed as a function;

a scalability attribute;

a scope of fault attribute; and

an availability mechanism.

13. The method of claim 12, wherein the model describes
components in terms of cost, failure rates, and time to repair.

14. The method of claim 12, wherein the availability
mechanism comprises a list of parameters, a range of values
for each parameter, a cost function, and a name of an affected
component attribute with a function specifying the value of
the affected attribute.

15. The method of claim 12, wherein specifying available
architecture components in the explorable partitionable for-
mat comprises:

establishing at least one tier;

listing candidate resource types usable in the at least one

tier; and

10

15

20

30

40

45

14

listing a service tier performance characterization for each
candidate resource type.

16. The method of claim 15, wherein each resource type

comprises at least one component type.

17. The method of claim 16, wherein each component type
is represented by a cost and at least one availability property.

18. The method of claim 17, wherein cost comprises a
periodic cost in units of currency per unit of time, and the
periodic cost comprises acquisition cost and component
operational cost.

19. The method of claim 17, wherein the at least one
availability property comprises a failure mode.

20. A computing device comprising:

a computer storage medium having stored thereon a model
for use in representing an infrastructure design space for
multi-tier systems, said model including a specification
for a plurality of components in a computing device
readable, explorable, and partitionable format, wherein
the specification of the plurality of components com-
prises component cost and component availability prop-
erties of the plurality of components, wherein said com-
puting device readable, explorable, and partitionable
format and components described therewith describe at
least one service in a service tier, wherein said partition-
able aspect of the format enables the model to be con-
figured in different configurations, and further wherein
said computing device readable, explorable, and parti-
tionable format comprises at least one from a group
comprising:

an attribute value expressed as an ordered set;

an attribute value expressed as a function;

a scalability attribute;

a scope of fault attribute; and

an availability mechanism.

21. The computing device of claim 20, wherein:

the scalability attribute specifies whether a number of
resource instances in the service tier can be altered dur-
ing a lifetime of the at least one service; and

the scope of fault attribute defines an effect of failure on the
service tier.

22. The computing device of claim 20, wherein said avail-
ability mechanism affects availability and performance of a
component by altering at least one component attribute value.

23. The computing device of claim 20, wherein the model
specification describes components in terms of cost, failure
rates, time to repair, and performance.

24. The computing device of claim 20, wherein the speci-
fication for the plurality of components comprises:

at least one tier;

a list of candidate resources usable in the at least one tier,
each candidate resource belonging to a candidate
resource type;

listing a service tier performance characterization for each
candidate resource type.

#* #* #* #* #*

